Superlattice configurations in linear chain hydrocarbon binary mixtures – Case of n-C₂₈H₅₈: n-C_xH_{2x+2} (x = 10, 12, 14, 16)

P B V PRASAD*, P B SHASHIKANTH** and P NEELIMA

SR Research Laboratory for Studies in Crystallization Phenomena, 10-1-96, Mamillaguda, Khammam 507 001, India

**Present address: Department of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia e-mail: prasadpbv_kmm@rediffmail.com

MS received 22 July 2004; revised 20 December 2004

Abstract. Powder XRD data of mixtures of title compounds are interpreted in terms of superlattices (SL). It is suggested that SL configurations (orthorhombic–orthorhombic, orthorhombic–monoclinic, monoclinic–monoclinic) are realizable, because of discrete orientational changes in the alignment of molecules of $n-C_{28}H_{58}$ hydrocarbon, through an angle mq, where m = 1, 2, 3 ... and angle q has an average value of 3.3°. Supporting literature evidence on the inclinations are discussed.

Keywords. Long-chain alkanes; binary mixtures; superlattices; discrete orientational changes.

1. Introduction

Powder X-ray diffraction (PXRD) studies¹⁻³ on mixtures of long-chain hydrocarbons show the occurrence of superlattice structures. A PXRD study was made on $n-C_{28}H_{58}: n-C_{18}H_{38}$ hydrocarbon-mixture system and a model of superlattice configuration was proposed⁴, in terms of orthorhombic–orthorhombic (b_0-b_0), orthorhombic–monoclinic (b_0-b_m) and monoclinic–monoclinic (b_m-b_m) structures of the two layers forming the superlattice phase. With a view to determine the applicability and generality of the (b_0-b_0), (b_0-b_m), (b_m-b_m) superlattice model, further PXRD studies were carried out on four different systems of hydrocarbons. The results of the study are presented in this report.

2. Materials and methods

Linear chain hydrocarbons, the *n*-octacosane $(n-C_{28}H_{58})$, *n*-decane $(n-C_{10}H_{22})$, *n*-dodecane $(n-C_{12}H_{26})$, *n*tetradecane $(n-C_{14}H_{30})$, and *n*-hexadecane $(n-C_{16}H_{34})$ were employed in the present study (for brevity the compounds are referred to as: C28, C10, C12, C14 and C16 respectively). All the compounds were from Fluka (Switzerland) with purity >99%. Mixtures of C28 : C10. C28 : C12, C28 : C14 and C28 : C16 were prepared in molar ratios (MR) and examined by the PXRD method. There were five samples in each system, with different MR values. PXRD patterns at ambient temperature were recorded on a computerinterfaced Philips powder X-ray Diffractometer, type PW1710, at 25 mA and 40 kV, using CoK a^2 radiation (1·79285 Å). PXRD patterns shown in figure 1 are representative of the diffraction patterns recorded in case of different binary mixtures.

Figure 1. PXRD patterns of C28 : C10 binary mixtures; MR values: (a) 1.9067; (b) 1.5876; (c) 0.9962; (d) 0.6254; (e) 0.2746.

^{*}For correspondence

pure C28 (refs 6, 7)			C28:C10		C28:C12		C28:C14				C28:C16			
No	$oldsymbol{b}_0$	\boldsymbol{b}_m	MR	d	Ι	MR	d	Ι	Mł	R d	Ι	MR	d	Ι
1 2 3 4 5	37·4065 18·7032 12·4688 9·3516 7·4813	33·2104 16·6052 11·0701 8·3026 6·6420	a	14.6206 10.8289 8.2078 6.5802 5.4988	1475 1303 847 697 595	а	$\begin{array}{c} 14.3477\\ 10.9265\\ 8.2230\\ 6.5924\\ 6.4302\end{array}$	1945 1892 1260 1011 548	a	10.5827 10.2636 8.0293 7.7314 6.4784	664 209 373 84 206	а	10.9930 10.3074 10.0514 8.2642 7.7947	557 278 206 328 185
1 2 3 4 5			b	$\begin{array}{c} 10.8728 \\ 10.1613 \\ 8.1549 \\ 7.8205 \\ 6.5802 \end{array}$	339 296 207 177 161	b	14·4297 10·9265 10·1613 8·2306 7·7657	2061 773 590 475 369	b	$\begin{array}{c} 11.0235\\ 10.0559\\ 8.2785\\ 7.8571\\ 6.6265\end{array}$	1314 112 740 68 462	b	10.9848 10.7507 10.1434 8.2583 8.1312	1986 643 206 1354 361
1 2 3 4 5			с	10.8661 10.3212 8.1850 7.8447 7.6223	999 586 681 317 207	с	10.9198 10.1671 8.2192 7.7794 6.5924	1082 361 762 266 630	с	11.0501 10.3275 8.2877 7.8730 6.6319	1287 301 827 210 679	с	10.9768 10.1148 8.2554 7.7036 6.6117	2247 82 1442 32 985
1 2 3 4 5			d	$\begin{array}{c} 14.5724 \\ 10.8595 \\ 8.2116 \\ 6.5753 \\ 5.5206 \end{array}$	1560 1043 980 620 659	d	10.9198 10.2082 8.2306 7.8067 6.6022	524 335 339 225 250	d	$\begin{array}{c} 11.0161\\ 10.1582\\ 8.2754\\ 7.7855\\ 6.6263\end{array}$	890 417 541 287 417	d	10.9930 10.1086 8.2591 7.7659 7.6501	1099 267 746 180 120
1 2 3 4 5			e	14·2897 10·8795 10·0631 8·2078 7·7488	2247 870 967 812 853	e	14·3306 13·7798 10·9276 10·4974 8·2266	1137 1195 1073 218 803	e	$\begin{array}{c} 11.0000\\ 10.5351\\ 10.2683\\ 8.2734\\ 7.8508 \end{array}$	1851 440 406 2078 360	e	10.9876 10.2666 10.0898 8.2546 7.8604	694 489 552 499 406
Mol	Molar ratios (MR) of the binary mixtures													
MR values														
Mix	ture	a	b	с		d	e							

The *d*-values of peaks in the PXRD patterns of all the samples were estimated (while taking the intensities into considerations for indexing purpose) and compared with the long spacings of C28 in orthorhombic and monoclinic phases;^{5,6} the phases are denoted by \mathbf{b}_0 and \mathbf{b}_m respectively. In the majority of cases, no matching was observed (table 1). PXRD data summed up by Robertson⁷ showed that the hydrocarbons C10 and C16 have long-spacings 13.4 Å and 20.9 Å respectively, corresponding to the triclinic phase; C11 and C15 have long-spacings 15.9 Å and 21.0 Å respectively, corresponding to \mathbf{b}_0 phase (char-

1.5876

1.4005

1.5870

1.4729

0.9962

1.0054

0.9859

1.0172

0.6254

0.5997

0.4872

0.5152

0.2746

0.1991

0.2410

0.2382

1.9067

1.9247

2.0350

1.9884

C28 : C10

C28 : C12

C28 : C14

C28 : C16

acteristic to odd carbon-number linear chain hydrocarbons⁸).

In order to account for the observed d_{001} values and justify the formation of superlattices, C10, C12, C14 and C16 hydrocarbons are assumed to occur in the \boldsymbol{b}_m and \boldsymbol{b}_0 phases (in view of the low melting points, these hydrocarbons cannot form the close-packed triclinic structures at room temperature); the lattice parameters *a* and *b*, of different short chain hydrocarbons (C10–C16) can then have comparable values with those of C28. (The cell parameters *a* and *b* of linear chain hydrocarbons, either in \boldsymbol{b}_m or \boldsymbol{b}_0 phases

Figure 2. Superlattices in C28 : Cx (x = 10, 12, 14, 16) mixture systems. (a) b_0-b_0 (C28 and Cx are in the b_0 phase): Fluctuations in the orientation of C28 (from the vertical mode or b_0 phase) can lead to different b_0-b_0 forms; (b) b_0-b_m (Cx in b_0 phase; C28 with different orientations in b_m phase). Clockwise rotation = angle f; anti-clockwise rotation = angle y. (c) b_m-b_m (Cx in b phase; C28 with different orientations in b_m phase).

have almost constant values and are independent of chain length.^{8,9})

3. Results and discussion

The peaks that did not match with the d-values of \boldsymbol{b}_m and \boldsymbol{b}_0 phases of C28 were identified in the PXRD data of each sample (table 1). Such selected d-values were compared with the *d*-values of three categories (figure 2) of superlattice models $(\boldsymbol{b}_0 - \boldsymbol{b}_0)$, $(\boldsymbol{b}_0 - \boldsymbol{b}_m)$, and $(\mathbf{b}_m - \mathbf{b}_m)$. The *d*-values of the first 20 peaks of the PXRD patterns of each sample were projected as d_{001} values (by multiplying them with suitable integers) and such *d*-values that matched the *d*-values of any superlattice configurations were picked up, tabulated and the averages calculated. The corresponding probable angles of inclinations (f or y: figure 2) of the molecules were estimated. These data are shown in tables 2–5. The meaning of angles f and \mathbf{v} are as follows. Let a C28 molecule be inclined through angle q_m with respect to lower basal plane (figure 2b). In the stable monoclinic form,⁵ $q_m = 60.44^\circ$. Let the inclination of C28 molecule fluctuate⁴ around q_m . If the change in the orientation of molecule is in the clockwise direction (from q_m position), then the change in the angle is denoted by f; in case of anticlockwise rotation, it is denoted by \mathbf{y} .

Similar to the situation seen in case of the C28– C18 system,⁴ the angle with value = $3 \cdot 3^{\circ}$ was seen to play an important role in the present case also (tables 2–5). The dispersion in the values of the estimated angle q (q = f/u = y/v; where u and v are integers) in case of five systems of hydrocarbon mixtures is shown in figure 3; the average of these values is $3 \cdot 3^{\circ}$. After noticing such persistent and constant behaviour in the angles, angles which were not the integer multiples of $3 \cdot 3^{\circ}$, and those which needed large integer multipliers, were not taken into consideration and the corresponding superlattices (involving such angles) were assumed to be non-occurring (or non realizable).

The present authors believe that tables 2–5 and figure 3 are ample evidence for the existence of discrete molecular orientational (or inclinational) changes in long-chain hydrocarbon systems and that they are explicitly manifested in the presence of shorter chain components, probably due to the greater freedom permitted by the environment (owing to the restricted fluidity of the shorter chain components at the time of crystallization).

3.1 The angle of value = 3.3°

Through the following considerations, an attempt is made to explain the significance of the angle of value = $3 \cdot 3^{\circ}$.

Let the initial state of molecules (for example AB) be vertical with respect to the basal plane X_1X_2 (normal to the plane of the diagram; figure 4a). In order to obtain an inclined structure (such as monoclinic), let the plane X_1X_2 be pushed up through an angle q and labeled as X'_1X_2 (figure 4b). Now, with the plane X_1X_2 , the molecules are also pushed up, through different distances. However, with respect to the basal plane P'_b , the overall structure is not an inclined structure. In order to make the structure an inclined one, each molecule has to be pulled down, through different distances (for example molecule AB through a distance h_i), so that the basal plane P'_b , is once again parallel to the initial plane P_b (figure 4c). In case of \boldsymbol{b}_m phase⁷ of C28, the angle $\boldsymbol{a} =$ 119.56° (so that $\mathbf{q} = 29.56^{\circ}$) and the lattice spacing (b) is 7.42 Å. It turns out that the value of h_i $(=b\sin q) = 3.66$ Å (figure 4d). This value divided by 1.27 Å (the projected bond length: b_{pl}) gives a value

	Observed							
Parameter	(b ₀) a	b		с	d			
(i) Superlattice t	<i>type:</i> $(b_0 - b_0)$							
$d_{001}({ m \AA})$ $oldsymbol{f}$	52.72	51.6331 15.22	50 21	4275 07	49·450 25·23			
<i>y</i> Integer multiplier <i>q</i> Resulting value	- - -	5 3·04 15·22	- 7 3 21	7 3·01 21·07				
			Observed					
Parameter	(b _m) a	b		c	d			
(ii) Superlattice	type: $(\boldsymbol{b}_0 - \boldsymbol{b}_m)$							
d_{001} (Å) f	48.256	47·2716 49·450 3·19 -		450	50·4275 _			
y Integer multiplier	_	1	4·33*		8·49* _			
q Resulting value	_	3·19 3·19	_		_			
		Obs	served					
Parameter	$(\boldsymbol{b}_m - \boldsymbol{b}_m)$ a	b	с	d	e			
(iii) Superlattice	type: $(\boldsymbol{b}_m - \boldsymbol{b}_m)$							
d_{001} (Å) f \mathbf{V}	46·768 	47·416 _ 1·75*	45·6275 3·67 −	44·2780 7·58	43·552 9·545			
Integer multiplier q Resulting value	- - -		1 3∙67 3∙67	2 3·75 7·5	3 3·18 9·54			

Table 2.C28 : C10 Superlattice configurations.

*Less probable

Figure 3. Extent of dispersion in the angle of orientation q (of C28 molecule), in case of binary mixtures of C28 with different shorter chain hydrocarbons.

of 2.88. It means that, in case of monoclinic structure, one C28 molecule slides through 2.88 bond lengths (b_{pl}), with respect to its neighbouring C28 molecule (placed towards the reference vertex of the triangle). Now if the angle $q = 3.3^{\circ}$, then the displacement, $h_i = 0.42$ Å. If 3.3° is taken to represent the smallest angular displacement, through which one C28 molecule slides (or shifts) with respect to its neighbour, then the ratio $b_{pl}/0.42 = 3.02$. It indicates that there are three such steps along one b_{pl} distance (1.27 Å). Probably, each step may indicate a (shallow) minimum.

In view of this argument, the value of h_i obtained in case of C28 (3.66 Å) has to be the result of a certain minimum distance multiplied by an integer. It is seen that 3.66/9 = 0.4066 and it differs slightly from 0.42. If $h_i = 0.4066$ is used in the equation

			Obs	served				
Parameter	_	(b ₀) a	b	с	d			
(i) Superlattice t	ype: (b ₀ -	(b_0)						
d_{001} (Å) f	5	5·26	54·5526 11·33	53.3685 19.12^+	5 52· 22·	6758 83 ⁺		
<i>y</i> Integer multiplier <i>q</i>		- - -	_ 3 3∙78*	- 6 3·185	7 3·1	27		
Resulting value		_	11.34	19.21	22.	87		
				Observ	ved			
Parameter	а	b	с	d	(b _m) e	f	g	h
(ii) Superlattice	<i>type:</i> (b ₀	$-\boldsymbol{b}_m$)						
d_{001} (A) f	54·5528 _	53·3685 _	52·6758	51.5737	50·6057 _	49·3556 4·57*	43·4557 18·82	41·5714 23·51*
У	18.23	10.44^{+}	6.73^{+}	3.40	_	_	—	-
Integer multiplier	5	3	2	1	-	-	6	7
<i>q</i> Resulting value	3.04 18.2	3·47 10·41	3·33 6·7	3.40 3.40	_	_	18.84	3·338 23·506
			Obs	served				
Parameter	(b	$(\boldsymbol{b}_m - \boldsymbol{b}_m)$ a	b	с	d			
(iii) Superlattice	e type: (b	$(n-\boldsymbol{b}_m)$						
d_{001} (A) f	48	3-9783	43∙4557 15∙31*	42·6739 17·13	41∙5 19∙6	714 0		
y Integer multiplier	-	-	4	- 5	_ 6			
q Resulting value	-	-	3·83 15·32	3·43 17·15	3·2 19·6	7 2		

Table 3.C28 : C12 Superlattice configuration.

*Less probable; ⁺have equal chances

Figure 4. (a)–(c) Modifications of vertical structure to inclined structure. (d) Minimum displacement and related angle: b = 7.42 Å in b_m phase of C28.

 $h_i = b \sin q$, then $q = 3.141^\circ$, which is not very different from 3.3° . However, the distribution of angle q(figure 5) shows a peak centred about 3.15° and seems to confirm the above point of view. Small variations in the orientations of shorter chain hydrocarbons (C10 etc.), which lead to modifications in the lamellar thickness, are sufficient to cause fluctuations in the value of q (leading to the average value 3.3°), as noticed in figure 3. Strobl¹⁰ proposed a flip-flop mechanism that could promote a screwlike motion of the hydrocarbon chain in a crystal matrix. It appears that the energy minima that are required in such a mechanism may be similar to the minima that are considered here. It may be noted that the sliding that is assumed to take place here is virtual, since superlattices are formed during the crystallization process itself. The molecules are stacked during the crystallization in a way that it may appear as if sliding of each molecule with respect to its

			Observed		
Parameter	(b ₀) a	b	с	d	e
(i) Superlattice t	<i>ype:</i> $(b_0 - b_0)$				
$d_{001}({ m \AA}) \ m{f}$	57·8 _	56·5439 16·26	55·2947 21·12	54·5749 24·24	53·4162 29·29
<i>y</i> Integer multiplier	_	5	6	7	9
q Resulting value	_	3·25 16·25	3.52 21.12	$3 \cdot 46$ $24 \cdot 22$	3.25 29.25
			Observed		
Parameter	(b _m) a	b	c	d	e
(ii) Superlattice	type: $(\boldsymbol{b}_0 - \boldsymbol{b}_m)$				
$d_{001}({ m \AA}) \ f$	53.33	53·4162 _	52·4147 3·26	51·4483 6·15	$50.2795 \\ 9.39$
y Integer multiplier	_	0.27	_ 1	$\frac{-}{2}$	3
q Resulting value	_	_	3·26 3·26	3·05 6·1	3·13 9·39
			Observed		
Parameter	$(\boldsymbol{b}_m - \boldsymbol{b}_m)$ a	b	с	d	e
(iii) Superlattice	type: $(\boldsymbol{b}_m - \boldsymbol{b}_m)$)			
d_{001} (Å) f	51.1877	51·4483 0·89*	50·5311 1·91*	52·4147 _ 4·47*	53.4162
<i>y</i> Integer multiplier <i>q</i> Resulting value	_ _ _	_ _ _	- - -	- - -	3 2·9 8·7

Table 4.C28 : C14 superlattice configurations.

*Less probable

Figure 5. (a) Distribution of the value of angle q, in case of different binary mixtures of C28 : Cx (x = 10, 12, 14, 16, 18). (b) Exponential nature of distribution angles.

				Observ	ed					
Parameter	(b ₀) a	b	с	d	e	f	g			
(i) Superlattice	<i>type:</i> (b ₀	- b ₀)								
d_{001} (Å) f	60·34 _	60·54	59·5982 11·94*	58·51 18·80	57·7273 22·51	56·6065 26·97	55·48 30·80	829 6		
<i>y</i> Integer multiplier <i>q</i> Resulting value	- - -	_ _ _	- 3 3.98 11.94	6 3·14 18·84	7 3·22 22·54	$-83.37^+26.96$	- 9 3·4: 30·8'	3 7		
					Obs	erved				
Parameter	(b _m) a	b	c	d	e	f	g	h	i	j
(ii) Superlattice	type: (b	$_{0}-\boldsymbol{b}_{\mathrm{m}})$								
d_{001} (Å) f	55·876 _	55·4829 1·31*	$54.80 \\ 3.47$	53·5288 7·17	52·5136 9·92	51.633 12.19	59·5982 _	58·51	57·7273	56·6065 _
y Integer multiplier	_	_	_ 1	2	-3	_ 4	17·62 5	10.76	7·05 2	2·99* _
q Resulting value	_	_	3·47 3·47	3·58 7·16	3·3 9·99	3·04 12·16	3·53 17·65	3·59* 10·77	3·5 7·0	_
					Obs	erved				
Parameter	(b _m - b	<i>m</i>) a	b	с	d	(е	f	g	
(iii) Superlattice	e type: (l	$(\boldsymbol{b}_m - \boldsymbol{b}_m)$								
d_{001} (Å) f	53-3	39 53 -	·5288	52·5136 2·87*	51.633 5.515	0 54·6 * _	5096	55·4829 _	56·606	5
<i>y</i> Integer multiplier	-	0	·65*	_	_	5.1	1*	7·45 2	13.37	
q Resulting value	-	_		_	-	_		3·72* 7·4	3·34+ 13·36	

 Table 5.
 C28 : C16 superlattice configuration.

*Less probable; ⁺have equal chances

Figure 6. Frequency of occurrence of different tilt angles; data were taken from refs 16 and 17.

neighbour, is the reason for the occurrence of such structure.

In our opinion, the present case is close to the situation that occurs during the crystallization of C28

in the usual \boldsymbol{b}_m phase, with the difference that each methyl group of the longer chain slips into neighbouring shallow minimum energy positions that are found on either side of deeper minima. It appears that virtual sliding may also be envisaged as due to virtual phase transitions. It is not possible to claim, based on the present limited PXRD data, that such slips into neighbouring shallow minima may be due to quantum fluctuations. (However, others reported such quantum fluctuations in the positions of molecules, which were not allowed classically, in the case of other compounds.¹¹)

3.2 Some supporting evidence

Since any proof in support of the hypothesis about differential inclinations of long-chain molecules can establish the validity of the model of super lattices

System	<i>T</i> (°C)	Pressure Π(mN/m)	Inclination (tilt) angle q	q as integer multiple (present work)
DPPC : PA (3 : 1)	30	15	25.5°	$3.1875 \times 8 = 25.5$
DPPC : PA (1 : 1)	30	15	22·1°	$3 \cdot 157 \times 7 = 22 \cdot 1$
DPPC : PA (1:2)	30	15	19·3°	$3 \cdot 22 \times 6 = 19 \cdot 32$
DPPC : PA (1:4)	30	15	19·1°	$3 \cdot 18 \times 6 = 19 \cdot 08$
DPPC : PA (3 : 1)	30	40	21·3°	$3.55 \times 6 = 21.3$
DPPC : PA (1 : 1)	30	40	< 5° (?)	≈ 3.3
DPPC : PA (1 : 2)	30	40	< 5° (?)	≈ 3.3
DPPC : PA (1 : 4)	30	40	< 5° (?)	≈ 3.3
DPPC : HD (3 : 1)	30	40	25·3°	$3 \cdot 614 \times 7 = 25 \cdot 29$
DPPC : HD (1:1)	30	40	20·8°	$3 \cdot 47 \times 6 = 20 \cdot 82$
DPPC : HD (1:2)	30	40	17·9°	$3.58 \times 5 = 17.9$
DPPC : HD (1:4)	30	40	$\leq 5 \cdot 0^{\circ}$ (?)	≈ 3.3

Table 6. Angle of inclination (DPPC mixtures) (ref. [11]).

PA = Palmitic acid; HD = Hexadecanol; DPPC = 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine

Figure 7. A schematic representation of vertical and tilted molecular chains: (a) saw teeth model; (b) relation between a and h.

in the binary systems of hydrocarbons, we surveyed the scenario of monolayer organizations studied by other researchers. The data seem to be in favour of our findings. Such supporting information and the relevant concepts are discussed in this section.

The DPPC : PA system studied by Lee *et al*¹² showed different angles of inclination q at different compositions. We found that these q values can be expressed as integer multiples of a value around 3° (table 6, last column). An angle that is very close to this value was obtained in case of super lattice configurations.^{9,10} We notice similar behaviour in some of single-component systems investigated by Peters *et al*,¹³ Bohm *et al*,¹⁴ Brezesinski *et al*¹⁵ and Levison *et al*¹⁶ as shown in table 7 (last column).

Jang and Miller¹⁷ measured the tilt angles of stearate molecules (present in the form of Langmuir-Blodgett films and self-assembled mono layers) at fluorite surfaces, by employing polarized Fourier transform infrared internal reflection spectroscopy. Lautz and Fischer¹⁸ made studies on Langmuir monolayers of octadecanol, employing Brewster angle auto correlation spectroscopy. The tilt (or inclination) angles reported (tables 3 and 4 of ref. 17; figure 4 of ref. 18) are given as the product of an angle ($\approx 3.3^{\circ}$) and an integer (*n*). The results are shown in figure 6. It may be observed that the distribution of angle of inclination that we derived from PXRD analysis (figure 5) is close to the situation presented in figure 6. Further, the tilt angles observed in case of behenic acid¹⁹ were q = 21 to 29° , and in case of calcium dibehenate²⁰ were: q = 3 to 13°. It may be noted that 3° is the lowest²⁰ detected value.

In the case of octodecanol (around the triple point), a jump in the tilt angle was reported¹⁷ from 3 to 8° and 4 to 7.5° for small changes in temperature i.e., 0.2° C and 0.1° C respectively (at two different temperatures). It is quite interesting to note that figure 4, 5 and 6 of ref. 18 showed complete absence of tilt in the range $0-3^{\circ}$. This result coincides with our observation that the first shallow minimum from the vertical (to the basal plane) is about 3.3° .

Orientational fluctuations of molecules are related to phase transitions in Langmuir mono layers¹⁸. Teer *et al*²¹ and Shih *et al*²² interpreted different phase transitions occurring in the mono layers in terms of interactions of the head groups and of aliphatic–aliphatic

System	Ref.	<i>T</i> (°C)	Pressure Π(mN/m)	Inclination (tilt) angle q	q as integer multiple (present work)
DPG	12	20	5	14	$3 \cdot 5 \times 4 = 14$
		20	40	$\leq 2 (?)$	_
l-DPPE	13	20	10	24	$3 \cdot 44 \times 7 = 24 \cdot 08$
		20	38	0	_
dl-DPPE		20	10	22	$3 \cdot 15 \times 7 = 22 \cdot 05$
		20	38	0	_
l-DPPC	14	15	30	30	$3.34 \times 9 = 30.06$
		15	45	25	3.58X7 = 25.06
DL-DPPC		15	30	27	$3 \cdot 38 \times 8 = 27 \cdot 04$
		15	45	25	$3.58 \times 7 = 25.06$
D-DPPC	15	20	27	29	$3 \cdot 29 \times 9 = 29 \cdot 07$
		20	41	25	$3.58 \times 7 = 25.06$
D-DPPC/		20	20	14	$3.5 \times 4 = 14$
PLA ₂		20	30	8(?)	_

Table 7. Angle of inclinations (some single component systems).

 $\label{eq:DPG} \begin{array}{l} DPG = 1,2 \text{-} dipalmitoyl \text{-} sn\text{-} glycerol; \\ DPPC = 1,2 \text{-} dipalmitoyl \text{-} sn\text{-} glycerol\text{-} 3\text{-} phophatidyl choline.} \\ \begin{array}{l} PLA_2 = phospholipase \quad A_2; \end{array}$

L = levorotatory; D = dextrorotatory; DL = racemic mixture

chains. Phase transitions result from instabilities caused by competition between intermolecular interactions.¹⁸ Luty and Eckhardt²³ developed a microscopic theory of orientational and structural instabilities associated with Langmuir mono layers, while considering a mechanism for coupling the lattice strain to molecular tilt and felt that a delicate balance between the potential and chain interactions dictates the molecular tilting characteristics. The authors²³ point out that the soft non-covalent interactions between molecular over-layers are due to shallow potential functions and cause the mode of epitaxy to be very sensitive to competition between the intermolecular interactions. The molecules relax to such orientations, where the potential energy is a minimum²⁴ (and also coincident configurations are at optimum). In this context, we wish to compare two adjacent hydrocarbon molecules (in a layer) with two saws (having identical triangular teeth) facing each other (figure 7a). Let the configuration be identified as one having minimum potential energy. When the saws are tilted to one side (in the same plane that contains them), then the teeth configuration is identical to the initial (minimum potential energy) one for a particular value of **a**, given by $\sin^{-1}(h/l)$. Since h is the width of each tooth (at its base; see figure 7b) the above expression may be written as $\mathbf{a} = \sin^{-1} (nh/l)$. Since for small values of \mathbf{a} , $\sin \alpha \approx \mathbf{a}$, it may be written that a = nh/l. Or if $h/l = a_0$, then $a = na_0$, where $a_0 \approx 3.3^\circ$, as shown by the simple reasoning put forth in the earlier discussion (§3). We believe that it is this angle that is manifested in inclinations (or tilt) of all aliphatic chains. We also noticed that different inclinations might exit in the super lattices of the same (binary) system. In this context, it may be recalled that Daughty *et al*²⁵ noticed increased tilt of molecules (with surface normal) with increasing numbers of layers (in case of an azo dye chromophore in zirconium phosphate–phosphonate) and attribute the trend to improved packing in lower layers upon deposition of additional epilayers.

4. Conclusions

Variability of the angle of inclination (q) in mono layer systems and the emergence of the $\langle q \rangle \approx 3.3^{\circ}$ and its very close proximity to the value that we noticed based on PXRD studies, indicates the possible validity of the model of superlattices that is proposed. SAXS and SANS investigations are planned to obtain greater insight into the superlattice structures of binary mixtures of hydrocarbons.

Acknowledgments

We thank the Department of Science and Technology, Government of India, for financial support. Our sincere thanks to Dr D Banerjee, Defence Metallurgical Research Laboratory (DMRL), Hyderabad, for permission to utilize the facilities. We thank Drs A K Singh and Satyam Suwas, DMRL, Hyderabad, for help in recording the PXRD spectra of a large number of samples. PBV thanks Prof. Ramana Rao, EIT, Mainafe, Eritrea Ms Marta Asmara University/ Library, Eritea and Mr Asmamaw Molla Debub University, Dilla, Ethiopia for cooperation.

References

- 1. Shashikanth P B and Prasad P B V 1999 Bull. Mater. Sci. 22 65
- 2. Shashikanth P B and Prasad P B V 2001 *Cryst. Res. Technol.* **36** 327
- 3. (a) Shashikanth P B and Prasad P B V 2001 *Proc. Indian Acad. (Chem. Sci.)* **113** 109; (b) Shashikanth P B and Prasad P B V 2003 *Proc. Indian Acad. (Chem. Sci.)* **15** 67
- Neelima P, Shashikanth P B and Prasad P B V 2004 14th LAWPSP (Lubricants, Additives, Waxes and Petroleum Specialty Products) Symposium, Mumbai, vol. 14, pp. W-02; 1–4
- 5. Aquilano D 1997 J. Cryst. Growth 37 215
- 6. Broadhurst M J 1962 J. Res. Nat. Bur. Stand. A66 241
- 7. Robertson J M 1953 *Organic crystals and molecules* (Ithaca, NY: Cornell University Press) pp 167, 169
- 8. Boistelle R 1980 in *Current topics in materials science* (ed.) E Kaldis (Amsterdam: North-Holland) vol 4
- 9. Bunn C W and Alcock T C 1945 Trans. Faraday Soc. 41 317
- 10. Stroble G R 1977 J. Polym. Sci. Polym. Symp. 59 121

- Colmenero J, Mukhopadhyay R, Alegria A and Frick B 1998 Phys. Rev. Lett. 80 2350
- 12. Lee K Y C, Gopal A, Von Nahmen A, Zasadzinski J A, Majewski J, Smith G S, Howes P B and Kjaer K 2002 J. Chem. Phys. **116** 774
- Robertson M, Peters G H, Toxavaerd S, Larsen N B, Bjørnholm T, Schaumburg K and Kjaer K 1995 Nature, Struct. Biol. 2 395
- Bohm C, Mohwald H, Leiserwitz L, Als-Nielsen J and Kjaer K 1993 Biophys. J. 64 553
- 15. Brezesinski G, Dietrich A, Struth B and Mohwald H 1995 Chem. Phys. Lipids **76** 145
- Dahmen-Levison U, Brezesinski G and Mohwald H 1998 Thin Solid Films 327 616
- 17. Jang W H and Miller J D 1995 J. Phys. Chem. 99 10272
- 18. Lautz C and Fischer T F 1997 J. Phys. Chem. B101 8790
- 19. Charych D H and Bednarski M D 1992 MRS Bull. 11 61
- 20. Maoz R and Sagiv J 1984 J. Colloid Intreface Sci. 100 465
- Teer E, Knobler C M, Kautz C, Wurlitzer S, Kildea J and Fischer T M 1997 J. Chem. Phys. 106 1913
- 22. Shih M C, Durbin M K, Malik A and Dutta P 1994 J. *Phys. Chem.* **101** 9132
- 23. Lutty T and Eckhardt C J 1995 J. Phys. Chem. 99 8872
- Simpson G J and Rowlen K L 1999 J. Phys. Chem. B103 1525
- 25. Doughty S K, Simpson G J and Rowlen K L 1998 J. Am. Chem. Soc. 120 7997