Superlattice configurations in linear chain hydrocarbon binary mixtures - Case of $n-\mathrm{C}_{28} \mathrm{H}_{58}: n-\mathrm{C}_{x} \mathrm{H}_{2 x+2}(x=10,12,14,16)$

P B V PRASAD*, P B SHASHIKANTH** and P NEELIMA
SR Research Laboratory for Studies in Crystallization Phenomena, 10-1-96, Mamillaguda, Khammam 507 001, India
**Present address: Department of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
e-mail: prasadpbv_kmm@rediffmail.com

MS received 22 July 2004; revised 20 December 2004

Abstract

Powder XRD data of mixtures of title compounds are interpreted in terms of superlattices (SL). It is suggested that SL configurations (orthorhombic-orthorhombic, orthorhombic-monoclinic, mono-clinic-monoclinic) are realizable, because of discrete orientational changes in the alignment of molecules of $n-\mathrm{C}_{28} \mathrm{H}_{58}$ hydrocarbon, through an angle $m \theta$, where $m=1,2,3 \ldots$ and angle θ has an average value of 3.3°. Supporting literature evidence on the inclinations are discussed.

Keywords. Long-chain alkanes; binary mixtures; superlattices; discrete orientational changes.

1. Introduction

Powder X-ray diffraction (PXRD) studies ${ }^{1-3}$ on mixtures of long-chain hydrocarbons show the occurrence of superlattice structures. A PXRD study was made on $n-\mathrm{C}_{28} \mathrm{H}_{58}: n-\mathrm{C}_{18} \mathrm{H}_{38}$ hydrocarbon-mixture system and a model of superlattice configuration was proposed ${ }^{4}$, in terms of orthorhombic-orthorhombic ($\beta_{0}-\beta_{0}$), orthorhombic-monoclinic $\left(\beta_{0}-\beta_{m}\right)$ and mono-clinic-monoclinic $\left(\beta_{m}-\beta_{m}\right)$ structures of the two layers forming the superlattice phase. With a view to determine the applicability and generality of the ($\beta_{0}-\beta_{0}$), ($\beta_{0}-\beta_{\mathrm{m}}$), ($\left.\beta_{m}-\beta_{m}\right)$ superlattice model, further PXRD studies were carried out on four different systems of hydrocarbons. The results of the study are presented in this report.

2. Materials and methods

Linear chain hydrocarbons, the n-octacosane ($n-\mathrm{C}_{28} \mathrm{H}_{58}$), n-decane $\left(n-\mathrm{C}_{10} \mathrm{H}_{22}\right)$, n-dodecane $\left(n-\mathrm{C}_{12} \mathrm{H}_{26}\right)$, n tetradecane ($n-\mathrm{C}_{14} \mathrm{H}_{30}$), and n-hexadecane $\left(n-\mathrm{C}_{16} \mathrm{H}_{34}\right)$ were employed in the present study (for brevity the compounds are referred to as: C28, C10, C12, C14 and C16 respectively). All the compounds were from Fluka (Switzerland) with purity $>99 \%$. Mixtures of C28:C10. C28: C12, C28: C14 and C28: C16 were

[^0]prepared in molar ratios (MR) and examined by the PXRD method. There were five samples in each system, with different MR values. PXRD patterns at ambient temperature were recorded on a computerinterfaced Philips powder X-ray Diffractometer, type PW1710, at 25 mA and 40 kV , using CoK α^{2} radiation $(1.79285 \AA$). PXRD patterns shown in figure 1 are representative of the diffraction patterns recorded in case of different binary mixtures.

Figure 1. PXRD patterns of C28: C10 binary mixtures; MR values: (a) 1.9067 ; (b) 1.5876 ; (c) 0.9962 ; (d) 0.6254 ; (e) $0 \cdot 2746$.

	pure C28 (refs 6, 7)		C28: C10			C28: C12			C28: C14			C28: C16		
No	β_{0}	β_{m}	MR	d	I									
1	37.4065	33.2104		14.6206	1475		14.3477	1945		10.5827	664		10.9930	557
2	18.7032	16.6052		10.8289	1303		10.9265	1892		$10 \cdot 2636$	209		10.3074	278
3	12.4688	11.0701	a	8.2078	847	a	8.2230	1260	a	8.0293	373	a	10.0514	206
4	9.3516	8.3026		6.5802	697		$6 \cdot 5924$	1011		7.7314	84		8.2642	328
5	7.4813	$6 \cdot 6420$		5.4988	595		6.4302	548		6.4784	206		7.7947	185
1				10.8728	339		14.4297	2061		11.0235	1314		10.9848	1986
2				$10 \cdot 1613$	296		10.9265	773		$10 \cdot 0559$	112		10.7507	643
3			b	8.1549	207	b	$10 \cdot 1613$	590	b	8.2785	740	b	$10 \cdot 1434$	206
4				7.8205	177		8.2306	475		7.8571	68		8.2583	1354
5				6.5802	161		7.7657	369		6.6265	462		8.1312	361
1				$10 \cdot 8661$	999		10.9198	1082		11.0501	1287		10.9768	2247
2				10.3212	586		$10 \cdot 1671$	361		$10 \cdot 3275$	301		$10 \cdot 1148$	82
3			c	$8 \cdot 1850$	681	c	8.2192	762	c	8.2877	827	c	8.2554	1442
4				7.8447	317		7.7794	266		7.8730	210		7.7036	32
5				7.6223	207		6.5924	630		6.6319	679		6.6117	985
1				14.5724	1560		10.9198	524		11.0161	890		10.9930	1099
2				10.8595	1043		10.2082	335		$10 \cdot 1582$	417		$10 \cdot 1086$	267
3			d	8.2116	980	d	8.2306	339	d	8.2754	541	d	8.2591	746
4				$6 \cdot 5753$	620		7.8067	225		7.7855	287		7.7659	180
5				$5 \cdot 5206$	659		$6 \cdot 6022$	250		6.6263	417		7.6501	120
1				14.2897	2247		14.3306	1137		11.0000	1851		10.9876	694
2				10.8795	870		13.7798	1195		10.5351	440		10.2666	489
3			e	10.0631	967	e	10.9276	1073	e	$10 \cdot 2683$	406	e	10.0898	552
4				8.2078	812		10.4974	218		8.2734	2078		8.2546	499
5				7.7488	853		8.2266	803		7.8508	360		$7 \cdot 8604$	406

Molar ratios (MR) of the binary mixtures
MR values

Mixture	a	b	c	d	e
C28 : C10	1.9067	1.5876	0.9962	0.6254	0.2746
C28 : C12	1.9247	1.4005	1.0054	0.5997	0.1991
C28 : C14	2.0350	1.5870	0.9859	0.4872	0.2410
C28 : C16	1.9884	1.4729	1.0172	0.5152	0.2382

The d-values of peaks in the PXRD patterns of all the samples were estimated (while taking the intensities into considerations for indexing purpose) and compared with the long spacings of C28 in orthorhombic and monoclinic phases; ${ }^{5,6}$ the phases are denoted by β_{0} and β_{m} respectively. In the majority of cases, no matching was observed (table 1). PXRD data summed up by Robertson ${ }^{7}$ showed that the hydrocarbons C10 and C16 have long-spacings $13.4 \AA$ and $20 \cdot 9 \AA$ respectively, corresponding to the triclinic phase; C11 and C15 have long-spacings $15.9 \AA$ and $21 \cdot 0 \AA$ respectively, corresponding to β_{0} phase (char-
acteristic to odd carbon-number linear chain hydrocarbons ${ }^{8}$).

In order to account for the observed d_{001} values and justify the formation of superlattices, C10, C12, C14 and C16 hydrocarbons are assumed to occur in the β_{m} and β_{0} phases (in view of the low melting points, these hydrocarbons cannot form the close-packed triclinic structures at room temperature); the lattice parameters a and b, of different short chain hydrocarbons (C10-C16) can then have comparable values with those of C28. (The cell parameters a and b of linear chain hydrocarbons, either in β_{m} or β_{0} phases

Figure 2. Superlattices in $\mathrm{C} 28: \mathrm{C} x(x=10,12,14,16)$ mixture systems. (a) $\beta_{0}-\beta_{0}$ (C28 and $\mathrm{C} x$ are in the β_{0} phase): Fluctuations in the orientation of C28 (from the vertical mode or β_{0} phase) can lead to different $\beta_{0}-\beta_{0}$ forms; (b) $\beta_{0}-\beta_{m}$ (Dx in β_{0} phase; C28 with different orientations in β_{m} phase). Clockwise rotation = angle ϕ; anti-clockwise rotation $=$ angle ψ. (c) $\beta_{m}-\beta_{m}$ ($\mathrm{C} x$ in β phase; C 28 with different orientations in β_{m} phase).
have almost constant values and are independent of chain length. ${ }^{8,9}$)

3. Results and discussion

The peaks that did not match with the d-values of β_{m} and β_{0} phases of C28 were identified in the PXRD data of each sample (table 1). Such selected d-values were compared with the d-values of three categories (figure 2) of superlattice models ($\beta_{0}-\beta_{0}$), $\left(\beta_{0}-\beta_{m}\right)$, and $\left(\beta_{m}-\beta_{m}\right)$. The d-values of the first 20 peaks of the PXRD patterns of each sample were projected as d_{001} values (by multiplying them with suitable integers) and such d-values that matched the d-values of any superlattice configurations were picked up, tabulated and the averages calculated. The corresponding probable angles of inclinations (ϕ or ψ : figure 2) of the molecules were estimated. These data are shown in tables $2-5$. The meaning of angles ϕ and ψ are as follows. Let a C28 molecule be inclined through angle θ_{m} with respect to lower basal plane (figure 2 b). In the stable monoclinic form, ${ }^{5} \theta_{m}=60 \cdot 44^{\circ}$. Let the inclination of C28 molecule fluctuate ${ }^{4}$ around θ_{m}. If the change in the orientation of molecule is in the clockwise direction (from θ_{m} position), then the change in the angle is denoted by ϕ; in case of anticlockwise rotadion, it is denoted by ψ.

Similar to the situation seen in case of the C28C18 system, ${ }^{4}$ the angle with value $=3 \cdot 3^{\circ}$ was seen to play an important role in the present case also (tables $2-5)$. The dispersion in the values of the estimated angle $\theta(\theta=\phi / u=\psi / v$; where u and v are integers) in case of five systems of hydrocarbon mixtures is shown in figure 3; the average of these values is 3.3°. After noticing such persistent and constant behavjour in the angles, angles which were not the integer multiples of $3 \cdot 3^{\circ}$, and those which needed large integer
multipliers, were not taken into consideration and the corresponding superlattices (involving such angles) were assumed to be non-occurring (or non realizable).

The present authors believe that tables $2-5$ and figure 3 are ample evidence for the existence of discrete molecular orientational (or inclinational) changes in long-chain hydrocarbon systems and that they are explicitly manifested in the presence of shorter chain components, probably due to the greater freedom permitted by the environment (owing to the restricted fluidity of the shorter chain components at the time of crystallization).

3.1 The angle of value $=3.3^{\circ}$

Through the following considerations, an attempt is made to explain the significance of the angle of value $=3 \cdot 3^{\circ}$.

Let the initial state of molecules (for example AB) be vertical with respect to the basal plane $X_{1} X_{2}$ (normal to the plane of the diagram; figure $4 a$). In order to obtain an inclined structure (such as monoclinic), let the plane $X_{1} X_{2}$ be pushed up through an angle θ and labeled as $X_{1}^{\prime} X_{2}$ (figure 4b). Now, with the plane $X_{1} X_{2}$, the molecules are also pushed up, through different distances. However, with respect to the basal plane P_{b}^{\prime}, the overall structure is not an inclined structure. In order to make the structure an inclined one, each molecule has to be pulled down, through different distances (for example molecule AB through a distance h_{i}), so that the basal plane P_{b}^{\prime}, is once again parallel to the initial plane P_{b} (figure $4 \mathrm{c})$. In case of β_{m} phase 7 of C28, the angle $\alpha=$ 119.56° (so that $\theta=29.56^{\circ}$) and the lattice spacing (b) is $7.42 \AA$. It turns out that the value of h_{i} $(=b \sin \theta)=3.66 \AA$ (figure 4d). This value divided by $1 \cdot 27 \AA$ (the projected bond length: $b_{p l}$) gives a value

Table 2. C28: C10 Superlattice configurations.

	Observed			
Parameter	$\left(\beta_{0}\right) \mathrm{a}$	b	c	d

(i) Superlattice type: $\left(\beta_{0}-\beta_{0}\right)$

$d_{001}(\AA)$	52.72	51.6331	50.4275	49.450
ϕ	-	15.22	21.07	25.23
ψ	-	-	-	-
Integer multiplier	-	5	7	8
θ	-	3.04	3.01	3.15
Resulting value	-	15.22	21.07	25.23

	Observed			
Parameter	$\left(\beta_{m}\right)$ a	b	c	d

(ii) Superlattice type: $\left(\beta_{0}-\beta_{m}\right)$

$d_{001}(\AA)$	48.256	47.2716	$49 \cdot 450$	$50 \cdot 4275$
ϕ	-	$3 \cdot 19$	-	-
ψ	-	-	$4 \cdot 33^{*}$	$8 \cdot 49^{*}$
Integer multiplier	-	1	-	-
θ	-	$3 \cdot 19$	-	-
Resulting value	-	$3 \cdot 19$	-	-

	Observed				
Parameter	$\left(\beta_{m}-\beta_{m}\right)$ a	b	c	d	e

(iii) Superlattice type: $\left(\beta_{m}-\beta_{m}\right)$

$d_{001}(\AA)$	46.768	47.416	45.6275	44.2780	43.552
ϕ	-	-	3.67	7.58	9.545
ψ	-	1.75^{*}	-	-	-
Integer multiplier	-	-	1	2	3
θ	-	-	3.67	3.75	3.18
Resulting value	-	-	3.67	7.5	9.54

*Less probable

Figure 3. Extent of dispersion in the angle of orientation θ (of C28 molecule), in case of binary mixtures of C28 with different shorter chain hydrocarbons.
of $2 \cdot 88$. It means that, in case of monoclinic structure, one C28 molecule slides through 2.88 bond lengths $\left(b_{p l}\right)$, with respect to its neighbouring C28 molecule (placed towards the reference vertex of the triangle). Now if the angle $\theta=3 \cdot 3^{\circ}$, then the displacement, $h_{i}=0.42 \AA$. If 3.3° is taken to represent the smallest angular displacement, through which one C28 molecule slides (or shifts) with respect to its neighbour, then the ratio $b_{p l} / 0 \cdot 42=3 \cdot 02$. It indicates that there are three such steps along one b_{pl} distance (1.27 Å). Probably, each step may indicate a (shallow) minimum.

In view of this argument, the value of h_{i} obtained in case of C28 $(3.66 \AA)$ has to be the result of a certain minimum distance multiplied by an integer. It is seen that $3 \cdot 66 / 9=0.4066$ and it differs slightly from 0.42 . If $h_{i}=0.4066$ is used in the equation

Table 3. C28: C12 Superlattice configuration.

Parameter		Observed						
		$\left(\beta_{0}\right) \mathrm{a}$	b	c	d			
(i) Superlattice type: $\left(\beta_{0}-\beta_{0}\right)$								
$d_{001}(\AA)$		$55 \cdot 26$	54.5526	$53 \cdot 3685$		6758		
ϕ		-	$11 \cdot 33$	$19 \cdot 12^{+}$		83+		
ψ		-	-	-	-			
Integer multiplier		-	3	6	7			
θ		-	3.78*	$3 \cdot 185$		27		
Resulting value		-	$11 \cdot 34$	$19 \cdot 21$	22			
Parameter	Observed							
	a	b	c	d	$\left(\beta_{m}\right) \mathrm{e}$	f	g	h
(ii) Superlattice type: $\left(\beta_{0}-\beta_{m}\right)$								
d_{001} (A)	54.5528	$8 \quad 53 \cdot 3685$	52.6758	51.5737	$50 \cdot 6057$	49.3556	43.4557	41.5714
ϕ	-	-	-	-	-	4•57*	18.82	23.51*
ψ	18.23	$10 \cdot 44^{+}$	$6.73{ }^{+}$	$3 \cdot 40$	-	-	-	-
Integer multiplier	5	3	2	1	-	-	6	7
θ	3.64	$3 \cdot 47$	$3 \cdot 35$	$3 \cdot 40$	-	-	$3 \cdot 14$	$3 \cdot 358$
Resulting value	$18 \cdot 2$	$10 \cdot 41$	$6 \cdot 7$	$3 \cdot 40$	-	-	18.84	$23 \cdot 506$
	Observed							
Parameter	$\left(\beta_{m}-\beta_{m}\right) \mathrm{a}$		b	c	d			
(iii) Superlattice type: $\left(\beta_{m}-\beta_{m}\right)$								
d_{001} (A)		$8.9783 \quad 43$	$43 \cdot 4557$	$42 \cdot 6739$	41.57	714		
ϕ		1	15.31*	$17 \cdot 13$	19.6			
ψ		-	-	-	-			
Integer multiplier		-	4	5	6			
θ		-	$3 \cdot 83$	$3 \cdot 43$	$3 \cdot 2$			
Resulting value		1	$15 \cdot 32$	$17 \cdot 15$	19.6			

*Less probable; ${ }^{\text {º }}$ have equal chances

Figure 4. (a)-(c) Modifications of vertical structure to inclined structure. (d) Minimum displacement and related angle: $b=7.42 \AA$ in β_{m} phase of C28.
$h_{i}=b \sin \theta$, then $\theta=3 \cdot 141^{\circ}$, which is not very different from $3 \cdot 3^{\circ}$. However, the distribution of angle θ (figure 5) shows a peak centred about $3 \cdot 15^{\circ}$ and seems to confirm the above point of view. Small variations in the orientations of shorter chain hydrocarbons (C10 etc.), which lead to modifications in the lamellar thickness, are sufficient to cause fluctuations in the value of θ (leading to the average value $3 \cdot 3^{\circ}$), as noticed in figure 3 . Strobl ${ }^{10}$ proposed a flip-flop mechanism that could promote a screwlike motion of the hydrocarbon chain in a crystal matrix. It appears that the energy minima that are required in such a mechanism may be similar to the minima that are considered here. It may be noted that the sliding that is assumed to take place here is virtual, since superlattices are formed during the crystallization process itself. The molecules are stacked during the crystallization in a way that it may appear as if sliding of each molecule with respect to its

Table 4. C28: C14 superlattice configurations.

	Observed				
Parameter	$\left(\beta_{0}\right) \mathrm{a}$	b	c	d	e
(i) Superlattice type: $\left(\beta_{0}-\beta_{0}\right)$					
$d_{001}(\AA)$	$57 \cdot 8$	$56 \cdot 5439$	$55 \cdot 2947$	$54 \cdot 5749$	$53 \cdot 4162$
ϕ	-	$16 \cdot 26$	$21 \cdot 12$	$24 \cdot 24$	$29 \cdot 29$
ψ	-	-	-	-	-
Integer multiplier	-	5	6	7	9
θ	-	$3 \cdot 25$	$3 \cdot 52$	$3 \cdot 46$	$3 \cdot 25$
Resulting value	-	$16 \cdot 25$	$21 \cdot 12$	$24 \cdot 22$	$29 \cdot 25$
			Observed		
	$\left(\beta_{m}\right) \mathrm{a}$	b	c	d	e

(ii) Superlattice type: $\left(\beta_{0}-\beta_{m}\right)$

$d_{001}(\AA)$	53.33	53.4162	52.4147	51.4483	50.2795
ϕ	-	-	3.26	$6 \cdot 15$	9.39
ψ	-	0.27	-	-	-
Integer multiplier	-	-	1	2	3
θ	-	-	3.26	3.05	$3 \cdot 13$
Resulting value	-	-	3.26	$6 \cdot 1$	9.39

Observed

	$\left(\beta_{m}-\beta_{m}\right)$ a	b	c	d	e

(iii) Superlattice type: $\left(\beta_{m}-\beta_{m}\right)$

$d_{001}(\AA)$	$51 \cdot 1877$	51.4483	$50 \cdot 5311$	52.4147	53.4162
ϕ	-	0.89^{*}	1.91^{*}	-	-
ψ	-	-	-	$4 \cdot 47^{*}$	$8 \cdot 70^{*}$
Integer multiplier	-	-	-	-	3
θ	-	-	-	-	2.9
Resulting value	-	-	-	-	8.7

*Less probable

Figure 5. (a) Distribution of the value of angle θ, in case of different binary mixtures of C 28 : $\mathrm{C} x(x=10,12$, 14, 16, 18). (b) Exponential nature of distribution angles.

Table 5. C28: C16 superlattice configuration.

Parameter	Observed									
	$\left(\beta_{0}\right) \mathrm{a}$	b	c	d	e	f	g			
(i) Superlattice type: $\left(\beta_{0}-\beta_{0}\right)$										
$d_{001}(\AA)$	$60 \cdot 34$	$60 \cdot 54$	59.5982	58.51	57.7273	56.6065	$55 \cdot 4829$			
ϕ	-	-	11.94*	$18 \cdot 80$	22.51	26.97	$30 \cdot 86$			
ψ	-	-	-	-	-	-	-			
Integer multiplier	-	-	3	6	7	8	9			
θ	-	-	3.98	$3 \cdot 14$	$3 \cdot 22$	$3 \cdot 37{ }^{+}$	3.43			
Resulting value	-	-	11.94	18.84	22.54	26.96	$30 \cdot 87$			
Parameter	Observed									
	(β_{m}) a	b	c	d	e	f	g	h	i	j
(ii) Superlattice type: $\left(\beta_{0}-\beta_{\mathrm{m}}\right)$										
$d_{001}(\AA)$	55.876	55.4829	$54 \cdot 80$	53.5288	52.5136	51.633	59.5982	58.51	$57 \cdot 7273$	$56 \cdot 6065$
ϕ		1-31*	$3 \cdot 47$	$7 \cdot 17$	9.92	$12 \cdot 19$	-	-	-	-
ψ	-	-	-	-	-	-	17.62	$10 \cdot 76$	7.05	2.99*
Integer multiplier	-	-	1	2	3	4	5	3	2	-
θ	-	-	$3 \cdot 47$	$3 \cdot 58$	$3 \cdot 3$	$3 \cdot 04$	3.53	3.59*	$3 \cdot 5$	-
Resulting value	-	-	$3 \cdot 47$	$7 \cdot 16$	9.99	$12 \cdot 16$	17.65	$10 \cdot 77$	$7 \cdot 0$	-
Parameter	Observed									
	$\left(\beta_{m}-\beta_{m}\right) \mathrm{a}$		b	c	d	e		f	g	
(iii) Superlattice type: $\left(\beta_{m}-\beta_{m}\right)$										
$d_{001}(\AA)$	53.	53.5288		52.5136	51.6330	-54•60	096	55.4829	$56 \cdot 6065$	
ϕ	-	-		2•87*	5•515*	* -		-	-	
ψ	-	0•65*		-	-	$5 \cdot 1$		$7 \cdot 45$	$13 \cdot 37$	
Integer multiplier	-	-		-	-	-		2	4	
θ	-	-		-	-	-		3.72*	$3 \cdot 34^{+}$	
Resulting value	-	-		-	-	-		7.4	13.36	

*Less probable; ${ }^{+}$have equal chances

Figure 6. Frequency of occurrence of different tilt angles; data were taken from refs 16 and 17.
neighbour, is the reason for the occurrence of such structure.

In our opinion, the present case is close to the situation that occurs during the crystallization of C28
in the usual β_{m} phase, with the difference that each methyl group of the longer chain slips into neighbouring shallow minimum energy positions that are found on either side of deeper minima. It appears that virtual sliding may also be envisaged as due to virtual phase transitions. It is not possible to claim, based on the present limited PXRD data, that such slips into neighbouring shallow minima may be due to quantum fluctuations. (However, others reported such quantum fluctuations in the positions of molecules, which were not allowed classically, in the case of other compounds. ${ }^{11}$)

3.2 Some supporting evidence

Since any proof in support of the hypothesis about differential inclinations of long-chain molecules can establish the validity of the model of super lattices

Table 6. Angle of inclination (DPPC mixtures) (ref. [11]).

System	$T\left({ }^{\circ} \mathrm{C}\right)$	Pressure $\Pi(\mathrm{mN} / \mathrm{m})$	Inclination (tilt) angle θ	θ as integer multiple (present work)
DPPC: PA ($3: 1)$	30	15	25.5°	$3 \cdot 1875 \times 8=25 \cdot 5$
DPPC: PA (1: 1)	30	15	22.1°	$3 \cdot 157 \times 7=22 \cdot 1$
DPPC: PA (1:2)	30	15	$19.3{ }^{\circ}$	$3 \cdot 22 \times 6=19 \cdot 32$
DPPC: PA (1:4)	30	15	19.1°	$3 \cdot 18 \times 6=19 \cdot 08$
DPPC: PA $(3: 1)$	30	40	21.3°	$3 \cdot 55 \times 6=21 \cdot 3$
DPPC: PA (1:1)	30	40	$<5^{\circ}$ (?)	$\approx 3 \cdot 3$
DPPC: PA ($1: 2)$	30	40	$<5^{\circ}$ (?)	≈ 3.3
DPPC: PA (1:4)	30	40	$<5^{\circ}$ (?)	$\approx 3 \cdot 3$
DPPC: HD (3:1)	30	40	$25.3{ }^{\circ}$	$3.614 \times 7=25.29$
DPPC: HD (1:1)	30	40	$20 \cdot 8^{\circ}$	$3.47 \times 6=20 \cdot 82$
DPPC: HD (1:2)	30	40	$17.9{ }^{\circ}$	$3.58 \times 5=17.9$
DPPC: HD (1:4)	30	40	$\leq 5 \cdot 0^{\circ}$ (?)	≈ 3.3

PA = Palmitic acid; HD = Hexadecanol; DPPC = 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine

Figure 7. A schematic representation of vertical and tilted molecular chains: (a) saw teeth model; (b) relation between α and h.
in the binary systems of hydrocarbons, we surveyed the scenario of monolayer organizations studied by other researchers. The data seem to be in favour of our findings. Such supporting information and the relevant concepts are discussed in this section.

The DPPC : PA system studied by Lee et al ${ }^{12}$ showed different angles of inclination θ at different compositions. We found that these θ values can be expressed as integer multiples of a value around 3° (table 6, last column). An angle that is very close to this value was obtained in case of super lattice configurations. ${ }^{9,10}$ We notice similar behaviour in some of single-component systems investigated by Peters et al, ${ }^{13}$ Bohm et al, ${ }^{14}$ Brezesinski et al ${ }^{15}$ and Levison et $a l^{16}$ as shown in table 7 (last column).

Jang and Miller ${ }^{17}$ measured the tilt angles of stearate molecules (present in the form of Lang-muir-Blodgett films and self-assembled mono layers) at fluorite surfaces, by employing polarized Fourier transform infrared internal reflection spectroscopy. Lautz and Fischer ${ }^{18}$ made studies on Langmuir monolayers of octadecanol, employing Brewster angle auto correlation spectroscopy. The tilt (or inclination) angles reported (tables 3 and 4 of ref. 17; figure 4 of ref. 18) are given as the product of an angle $\left(\approx 3 \cdot 3^{\circ}\right)$ and an integer (n). The results are shown in figure 6. It may be observed that the distribution of angle of inclination that we derived from PXRD analysis (figure 5) is close to the situation presented in figure 6 . Further, the tilt angles observed in case of behenic acid ${ }^{19}$ were $\theta=21$ to 29°, and in case of calcium dibehenate ${ }^{20}$ were: $\theta=3$ to 13°. It may be noted that 3° is the lowest ${ }^{20}$ detected value.

In the case of octodecanol (around the triple point), a jump in the tilt angle was reported ${ }^{17}$ from 3 to 8° and 4 to 7.5° for small changes in temperature i.e., $0 \cdot 2^{\circ} \mathrm{C}$ and $0 \cdot 1^{\circ} \mathrm{C}$ respectively (at two different temperatures). It is quite interesting to note that figure 4,5 and 6 of ref. 18 showed complete absence of tilt in the range $0-3^{\circ}$. This result coincides with our observation that the first shallow minimum from the vertical (to the basal plane) is about $3 \cdot 3^{\circ}$.

Orientational fluctuations of molecules are related to phase transitions in Langmuir mono layers ${ }^{18}$. Teer et $a l^{21}$ and Shih et $a l^{22}$ interpreted different phase transitions occurring in the mono layers in terms of interactions of the head groups and of aliphatic-aliphatic

Table 7. Angle of inclinations (some single component systems).

System	Ref.	$T\left({ }^{\circ} \mathrm{C}\right)$	Pressure $\Pi(\mathrm{mN} / \mathrm{m})$	Inclination (tilt) angle θ	θ as integer multiple (present work)
DPG	12	20	5	14	$3 \cdot 5 \times 4=14$
		20	40	$\leq 2(?)$	-
L-DPPE	13	20	10	24	$3 \cdot 44 \times 7=24 \cdot 08$
		20	38	0	-
DL-DPPE		20	10	22	$3 \cdot 15 \times 7=22 \cdot 05$
		20	38	0	-
L-DPPC	14	15	30	30	$3 \cdot 34 \times 9=30 \cdot 06$
		15	45	25	$3 \cdot 58 \times 7=25.06$
DL-DPPC		15	30	27	$3 \cdot 38 \times 8=27 \cdot 04$
		15	45	25	$3 \cdot 58 \times 7=25 \cdot 06$
D-DPPC	15	20	27	29	$3 \cdot 29 \times 9=29 \cdot 07$
		20	41	25	$3 \cdot 58 \times 7=25 \cdot 06$
D-DPPC/		20	20	14	$3 \cdot 5 \times 4=14$
PLA 2	20	30	$8(?)$	-	

DPG $=1,2$-dipalmitoyl-sn-glycerol; DPPE = dipalmitoyl phosphatidyl ethanolamine; DPPC $=1,2$-dipalmitoyl-sn-glycero-3-phophatidylcholine. PLA $_{2}=$ phospholipase A_{2};
$\mathrm{L}=$ levorotatory; $\mathrm{D}=$ dextrorotatory; $\mathrm{DL}=$ racemic mixture
chains. Phase transitions result from instabilities caused by competition between intermolecular interactions. ${ }^{18}$ Luty and Eckhardt ${ }^{23}$ developed a microscopic theory of orientational and structural instabilities associated with Langmuir mono layers, while considering a mechanism for coupling the lattice strain to molecular tilt and felt that a delicate balance between the potential and chain interactions dictates the molecular tilting characteristics. The authors ${ }^{23}$ point out that the soft non-covalent interactions between molecular over-layers are due to shallow potential functions and cause the mode of epitaxy to be very sensitive to competition between the intermolecular interactions. The molecules relax to such orientations, where the potential energy is a minimum ${ }^{24}$ (and also coincident configurations are at optimum). In this context, we wish to compare two adjacent hydrocarbon molecules (in a layer) with two saws (having identical triangular teeth) facing each other (figure 7a). Let the configuration be identified as one having minimum potential energy. When the saws are tilted to one side (in the same plane that contains them), then the teeth configuration is identical to the initial (minimum potential energy) one for a particular value of α, given by $\sin ^{-1}(h / l)$. Since h is the width of each tooth (at its base; see figure 7b) the above expression may be written as $\alpha=\sin ^{-1}(n h / l)$. Since for small values of $\alpha, \sin \alpha \approx \alpha$, it may be written that $\alpha=n h / l$. Or if $h / l=\alpha_{0}$, then $\alpha=n \alpha_{0}$, where $\alpha_{0} \approx 3.3^{\circ}$, as shown by the simple reasoning put forth in the earlier discussion (§3). We believe that it is this an-
gle that is manifested in inclinations (or tilt) of all aliphatic chains. We also noticed that different inclinations might exit in the super lattices of the same (binary) system. In this context, it may be recalled that Daughty et al ${ }^{25}$ noticed increased tilt of molecules (with surface normal) with increasing numbers of layers (in case of an azo dye chromophore in zirconium phosphate-phosphonate) and attribute the trend to improved packing in lower layers upon deposition of additional epilayers.

4. Conclusions

Variability of the angle of inclination (θ) in mono layer systems and the emergence of the $\langle\theta\rangle \approx 3 \cdot 3^{\circ}$ and its very close proximity to the value that we noticed based on PXRD studies, indicates the possible validity of the model of superlattices that is proposed. SAXS and SANS investigations are planned to obtain greater insight into the superlattice structures of binary mixtures of hydrocarbons.

Acknowledgments

We thank the Department of Science and Technology, Government of India, for financial support. Our sincere thanks to Dr D Banerjee, Defence Metallurgical Research Laboratory (DMRL), Hyderabad, for permission to utilize the facilities. We thank Drs A K Singh and Satyam Suwas, DMRL, Hyderabad,
for help in recording the PXRD spectra of a large number of samples. PBV thanks Prof. Ramana Rao, EIT, Mainafe, Eritrea Ms Marta Asmara University/ Library, Eritea and Mr Asmamaw Molla Debub University, Dilla, Ethiopia for cooperation.

References

1. Shashikanth P B and Prasad P B V 1999 Bull. Mater. Sci. 2265
2. Shashikanth P B and Prasad P B V 2001 Cryst. Res. Technol. 36327
3. (a) Shashikanth P B and Prasad P B V 2001 Proc. Indian Acad. (Chem. Sci.) 113 109; (b) Shashikanth P B and Prasad P B V 2003 Proc. Indian Acad. (Chem. Sci.) 1567
4. Neelima P, Shashikanth P B and Prasad P B V 2004 14th LAWPSP (Lubricants, Additives, Waxes and Petroleum Specialty Products) Symposium, Mumbai, vol. 14, pp. W-02; 1-4
5. Aquilano D 1997 J. Cryst. Growth 37215
6. Broadhurst M J 1962 J. Res. Nat. Bur. Stand. A66 241
7. Robertson J M 1953 Organic crystals and molecules (Ithaca, NY: Cornell University Press) pp 167, 169
8. Boistelle R 1980 in Current topics in materials science (ed.) E Kaldis (Amsterdam: North-Holland) vol 4
9. Bunn C W and Alcock T C 1945 Trans. Faraday Soc. 41317
10. Stroble G R 1977 J. Polym. Sci. Polym. Symp. 59121
11. Colmenero J, Mukhopadhyay R, Alegria A and Frick B 1998 Phys. Rev. Lett. 802350
12. Lee K Y C, Gopal A, Von Nahmen A, Zasadzinski J A, Majewski J, Smith G S, Howes P B and Kjaer K 2002 J. Chem. Phys. 116774
13. Robertson M, Peters G H, Toxavaerd S, Larsen N B, Bjørnholm T, Schaumburg K and Kjaer K 1995 Nature, Struct. Biol. 2395
14. Bohm C, Mohwald H, Leiserwitz L, Als-Nielsen J and Kjaer K 1993 Biophys. J. 64553
15. Brezesinski G, Dietrich A, Struth B and Mohwald H 1995 Chem. Phys. Lipids 76145
16. Dahmen-Levison U, Brezesinski G and Mohwald H 1998 Thin Solid Films 327616
17. Jang W H and Miller J D 1995 J. Phys. Chem. 99 10272
18. Lautz C and Fischer T F 1997 J. Phys. Chem. B101 8790
19. Charych D H and Bednarski M D 1992 MRS Bull. 1161
20. Maoz R and Sagiv J 1984 J. Colloid Intreface Sci. 100465
21. Teer E, Knobler C M, Kautz C, Wurlitzer S, Kildea J and Fischer T M 1997 J. Chem. Phys. 1061913
22. Shih M C, Durbin M K, Malik A and Dutta P 1994 J. Phys. Chem. 1019132
23. Lutty T and Eckhardt C J 1995 J. Phys. Chem. 99 8872
24. Simpson G J and Rowlen K L 1999 J. Phys. Chem. B103 1525
25. Doughty S K, Simpson G J and Rowlen K L 1998 J. Am. Chem. Soc. 1207997

[^0]: *For correspondence

